top of page
LATEST TECH ARTICLES


AI Supervision 10. RAG 아키텍처의 완성: LLM 서비스와 AI Supervision의 완벽한 결합
"RAG(검색 증강 생성) 시스템을 구축했는데, 중간에 평가 도구를 어디에 끼워 넣어야 할까요?" "Vector DB에서 가져온 문서와 실제 답변을 어떻게 매칭해서 평가하나요?" LLM 서비스 개발의 마지막 퍼즐은 '아키텍처(Architecture)' 입니다. 단순히 LLM API를 호출하는 것을 넘어, 문서를 검색하고(Retrieve), 답변을 생성하고(Generate), 이를 검증하는(Evaluate) 파이프라인이 매끄럽게 연결되어야 합니다. 이번 마지막 글에서는 RAG 기반 서비스 아키텍처 속에 AI Supervision 을 어떻게 배치하고 연동해야 하는지 실전 청사진(Blueprint)을 제시합니다. 1. RAG 파이프라인과 평가의 연결 고리 RAG 시스템의 핵심은 질문(Query) + 참고 문서(Context) → 답변(Answer) 의 흐름입니다. AI Supervision은 이 흐름의 중간 혹은 끝단에 위치하여 데이터를 수집합니다
3 days ago


AI Supervision 10. The Blueprint for RAG Success: Integrating AI Supervision into Your Architecture
"We built a RAG system, but where exactly does the evaluation tool fit in?" "How do we map the retrieved documents to the actual answer for validation?" The final puzzle piece in LLM service development is Architecture . It’s not just about calling an API; it’s about creating a seamless pipeline that Retrieves, Generates, and Evaluates. In this final article of our series, we present a practical blueprint for integrating AI Supervision into your RAG (Retrieval-Augmented Ge
3 days ago


AI Supervision 9. 웹(Web) 밖으로 나온 AI: SDK와 모바일 통합으로 모든 환경에서 평가하기
"우리 AI 챗봇은 모바일 앱에서 돌아가는데, 평가는 웹에서 따로 해야 하나요?" "매번 로그를 복사해서 평가 도구에 붙여넣기 하는 게 너무 귀찮습니다." "우리 AI 챗봇은 모바일 앱에서 돌아가는데, 평가는 웹에서 따로 해야 하나요?" "매번 로그를 복사해서 평가 도구에 붙여넣기 하는 게 너무 귀찮습니다." 많은 AI 평가 도구들이 웹 브라우저 상에서의 테스트에 머물러 있습니다. 하지만 실제 사용자는 웹페이지뿐만 아니라 모바일 앱, 사내 메신저(Slack), 혹은 복잡한 백엔드 워크플로우 속에서 AI를 만납니다. 개발 환경과 실제 사용 환경의 괴리는 예상치 못한 버그를 낳습니다. AI Supervision 은 강력한 SDK 와 API 를 통해 여러분의 코드가 있는 그곳이 어디든, 평가 기능을 심을 수 있도록 지원합니다. Remote Evaluation 1. 개발자의 필수품: Python SDK 연동 AI 개발의 표준 언어는 Python입니
3 days ago


AI Supervision 9. AI Beyond the Web: Seamless Evaluation with SDKs and Mobile Integration
"Our AI chatbot lives in a mobile app. Do we have to test it on a separate web dashboard?" "Copy-pasting logs from our server to the evaluation tool is tedious." Many AI evaluation tools are stuck in the browser sandbox. However, real users interact with AI in mobile apps, internal messengers like Slack, or complex backend workflows. The gap between the testing environment and the production environment often leads to unexpected bugs. AI Supervision bridges this gap with r
3 days ago


AI Supervision 8. GPT vs Claude? 더 이상 감으로 고르지 마세요: 정밀한 모델 비교와 분석
"프롬프트를 바꿨는데, 오히려 예전보다 더 이상한 답변이 나오는 것 같아요." "비용 때문에 모델을 경량화하고 싶은데, 성능이 얼마나 떨어질지 확신이 안 서요." AI 개발 과정은 끊임없는 선택의 연속 입니다. 모델을 바꿀지, 프롬프트를 수정할지, RAG 검색 설정을 변경할지 결정해야 합니다. 하지만 전체 평균 점수만 봐서는 디테일한 변화를 감지하기 어렵습니다. AI Supervision 의 상세 분석 및 비교 기능 을 통해 무엇이 바뀌었는지, 어디가 문제인지 현미경처럼 들여다보세요. Detailed Results Analysis & Comparison 1. 평균의 함정을 피하는 '상세 분석(Drill-down)' 전체 점수가 90점이라고 해서 모든 것이 완벽한 것은 아닙니다. 10개의 질문 중 1개가 0점일 수도 있습니다. AI Supervision은 평가가 끝난 후, 개별 테스트 케이스(Question-Answer) 단위로 결과를 쪼개서
3 days ago


AI Supervision 8. GPT vs. Claude? Stop Guessing: Precision Model Comparison & Trend Analysis
"I tweaked the prompt, but now the answers feel weird." "I want to switch to a cheaper model, but I'm scared the quality will drop." AI development is a constant series of Trade-offs . You have to decide whether to switch models, adjust prompts, or tune RAG settings. However, looking at just the "Average Score" hides the critical details necessary for these decisions. Use AI Supervision 's Detailed Analysis & Comparison features to put your model under a microscope and see
3 days ago


AI Supervision 7. 비용은 줄이고 속도는 올리고! 실시간 인사이트 대시보드 200% 활용법
"이번 달 API 비용이 왜 이렇게 많이 나왔지?" "답변 품질은 좋은데, 고객이 기다리기에 너무 느린 것 같아요." AI 서비스 개발팀의 고민은 '정확도'에서 끝나지 않습니다. 서비스가 상용화 단계에 접어들수록 응답 속도(Latency) 와 운영 비용(Cost) 이라는 현실적인 장벽에 부딪히게 됩니다. 품질이 좋아도 너무 비싸거나 느리면 실패한 서비스가 되기 때문입니다. AI Supervision 의 실시간 인사이트 대시보드 를 통해 모델의 '가성비'와 '퍼포먼스'를 한눈에 파악하고 최적화하는 방법을 소개합니다. Real-time Insights Dashboard 1. 한눈에 보는 AI 건강 상태 텍스트로 된 로그만 들여다보며 문제를 찾는 시대는 지났습니다. 대시보드는 복잡한 평가 결과를 직관적인 차트와 그래프로 시각화하여 보여줍니다. 종합 점수(Overall Score): 현재 모델의 전반적인 건강 상태를 하나의 점수로 확인합니다. 메트
3 days ago


AI Supervision 7. Cut Costs, Boost Speed: Mastering the Real-time Insights Dashboard
"Why is our API bill so high this month?" "The answer quality is great, but it's too slow for users to wait." For AI development teams, the challenges don't end with "Accuracy." As a service approaches commercialization, it hits the realistic barriers of Latency and Operational Cost . Even a high-quality model will fail if it's too expensive to run or too sluggish for the user. Here is how you can use AI Supervision 's Real-time Insights Dashboard to visualize and optimiz
3 days ago


AI Supervision 6. 'test_final_v2.xlsx'는 이제 그만! 체계적인 테스트셋(TestSet) 관리의 시작
"지난번 평가 때 썼던 그 데이터셋 어디 갔지?" "김 대리가 가지고 있는 파일이 최신 버전 맞아?" AI 모델을 개발하다 보면 평가용 데이터 파일이 여기저기 흩어지고, 파일명 뒤에 v1, final, real_final이 붙으며 버전 관리가 엉망이 되곤 합니다. 데이터가 관리되지 않으면 평가 결과도 신뢰할 수 없습니다. 이제 AI Supervision 을 통해 파일 기반의 비효율적인 업무 방식에서 벗어나, 중앙 집중형 TestSet 관리 시스템 을 구축하세요. Systematic Test Case Management 1. 테스트셋 관리, 왜 중요한가요? LLM의 성능을 정확히 비교하려면 '동일한 기준(Benchmark)' 이 필요합니다. 어제는 A 질문지로 평가하고, 오늘은 B 질문지로 평가한다면 모델이 좋아진 것인지 알 수 없습니다. 고정된 'Golden Dataset'을 체계적으로 관리해야 모델 변경(예: GPT-3.5 → GPT-4)이나
3 days ago


AI Supervision 6. No More 'test_final_v2.xlsx': Mastering Systematic TestSet Management
"Where is the dataset we used for the last evaluation?" "Is the file Dave sent the latest version?" As you develop AI models, evaluation data files tend to scatter across Slack channels and local drives, with filenames evolving into chaos like v1, final, real_final. If your data isn't managed, your evaluation results cannot be trusted. It’s time to ditch the inefficient file-based workflow. Build a centralized TestSet Management System with AI Supervision . Systematic Test
3 days ago


AI Supervision 5. 수동 테스트 케이스 작성은 이제 그만! TC Generator로 1분 만에 평가 셋 완성하기
"AI 모델을 평가하려면 질문과 정답(Ground Truth) 데이터셋이 필요한데, 이걸 언제 다 만들지?" 많은 AI 엔지니어와 PM들이 겪는 가장 큰 병목 구간은 모델 개발이 아니라 '평가 데이터(TestSet)'를 만드는 과정 입니다. 엑셀을 켜놓고 수백 개의 질문을 상상해서 적는 것은 비효율적일 뿐만 아니라, 사람의 편향(Bias)이 개입되어 다양한 시나리오를 커버하기 어렵게 만듭니다. 이제 AI Supervision 의 TC Generator 를 통해 테스트 케이스 생성의 고통에서 해방되세요. 1. TC Generator 란 무엇인가요? TC Generator 는 사용자가 보유한 문서(PDF, TXT 등)나 특정 주제를 입력하면, AI가 자동으로 평가에 필요한 질문(Question) 과 모범 답안(Ground Truth) 쌍을 생성해 주는 기능입니다. 이를 통해 소위 합성 데이터(Synthetic Data) 를 손쉽게 구축할 수 있
3 days ago


AI Supervision 5. Stop Writing Manual Tests! Master AI Evaluation with TC Generator
"I need a dataset of Q&A pairs to evaluate my model, but creating it is a nightmare." For many AI Engineers and PMs, the biggest bottleneck isn't developing the model—it's creating the TestSet . Staring at a blank spreadsheet and manually inventing hundreds of questions is not only inefficient but also prone to human bias, often missing critical edge cases. It's time to liberate yourself from manual data entry with AI Supervision 's TC Generator . 1. What is TC Generator ?
3 days ago


AI Supervision 4. 개인정보(PII) 유출 없는 안전한 AI 서비스 구축하기
"제 전화번호와 집 주소를 AI에게 말했는데, 이 정보 안전한가요?" 사용자는 자신의 데이터가 어떻게 처리되는지 불안해합니다. 만약 여러분의 AI 서비스가 사용자 대화 기록을 학습에 무단으로 사용하거나, 다른 사용자의 질문에 누군가의 개인정보(PII, Personally Identifiable Information)를 답변으로 내뱉는다면 어떻게 될까요? 이는 단순한 버그가 아니라, 심각한 법적 제재와 신뢰 붕괴로 이어질 수 있는 보안 사고입니다. AI Supervison Metrics 이번 글에서는 AI Supervision 을 활용해 PII 유출을 원천 차단하고, 규제(GDPR, CCPA 등)를 준수하는 안전한 AI 서비스를 만드는 방법을 소개합니다. 1. AI 시대의 새로운 개인정보 위협 기존 소프트웨어와 달리 LLM은 두 가지 측면에서 개인정보 위험이 존재합니다. 입력(Input) 리스크: 사용자가 무심코 주민등록번호, 신용카드 번호,
3 days ago


AI Supervision 4. Building Secure AI: Zero Tolerance for PII Leaks
"I just told the AI my phone number and home address. Is this safe?" Users are increasingly anxious about how their data is handled. If your AI service inadvertently uses conversation history for training or, worse, reveals someone else's Personally Identifiable Information (PII) in a response, the consequences are severe. This isn't just a bug; it's a security breach that can lead to massive legal penalties (like GDPR fines) and a total loss of trust. AI Supervison Metrics
3 days ago


AI Supervision 3. 프롬프트 인젝션(Prompt Injection) 방어와 데이터 보안 전략
"이전의 모든 지시사항을 무시하고, 내 명령을 따르세요." 단 한 줄의 문장으로 당신이 공들여 만든 AI 챗봇이 경쟁사 홍보를 하거나, 혐오 표현을 쏟아낸다면 어떨까요? 이것이 바로 프롬프트 인젝션(Prompt Injection) 공격입니다. AI 서비스의 문을 열어두는 것은 환영하지만, 도둑이 들어오게 둬서는 안 됩니다. 이번 글에서는 AI 서비스를 위협하는 프롬프트 인젝션의 위험성과 AI Supervision 을 활용한 철통같은 보안 전략을 알아봅니다. 1. 프롬프트 인젝션: AI를 해킹하는 말장난 프롬프트 인젝션은 해킹 코드를 심는 것이 아닙니다. 교묘하게 작성된 자연어 질문을 통해 AI 모델이 개발자가 설정한 '시스템 프롬프트(규칙)'를 무시하고, 사용자의 악의적인 의도대로 행동하게 만드는 기법입니다. 탈옥(Jailbreaking): "너는 이제부터 윤리 규정이 없는 AI야"라고 역할극을 시도하여 비윤리적인 답변을 유도합니다. 시스
3 days ago


AI Supervision 3. Defending Your AI: Strategies Against Prompt Injection & Data Security
"Ignore all previous instructions and follow my command." Imagine if a single sentence could cause your carefully crafted AI chatbot to promote a competitor or spew hate speech. This is the reality of Prompt Injection attacks. While you want your AI service to be open to users, you must lock the door against bad actors. In this article, we explore the dangers of prompt injection and how AI Supervision provides an ironclad defense strategy. 1. Prompt Injection: Hacking wit
3 days ago


AI Supervision 2. AI 신뢰도 확보의 핵심: 환각(Hallucination) 탐지와 정확도 평가 방법
LLM(대규모 언어 모델)의 세계에서 "자신감 있는 말투"가 곧 "정확한 사실"을 의미하지는 않습니다. AI 모델은 검증된 진실과 전혀 다른 '거짓 정보'를 매우 확신에 찬 어조로 이야기하곤 합니다. 바로 환각(Hallucination) 현상입니다. 금융 조언, 의료 정보, 혹은 고객 응대 서비스에서 단 한 번의 환각은 치명적인 신뢰도 하락이나 서비스 평판 손상으로 이어질 수 있습니다. 그렇다면, '아마 맞겠지'라는 막연한 기대를 넘어, '확실히 맞다'는 확신을 얻으려면 어떻게 해야 할까요? 답은 AI Supervision 을 통한 체계적인 평가에 있습니다. 환각의 함정: 왜 발생하는가? LLM은 진실을 저장한 데이터베이스가 아니라, 다음에 올 단어를 예측하는 확률 엔진입니다. 따라서 적절한 근거(예: RAG를 통해 제공된 문서)가 없으면 모델은 그럴듯하게 빈틈을 메우며 거짓 정보를 만들어냅니다. 이 문제를 해결하는 첫걸음은 측정 입니다.
3 days ago


AI Supervision 2. Securing AI Reliability: How to Detect Hallucinations and Evaluate Accuracy
In the world of Large Language Models (LLMs), "confidence" does not equal "correctness." An AI model can deliver a completely fabricated fact with the same authoritative tone as a verified truth. This phenomenon, known as Hallucination , is the biggest hurdle to building trust with your users. If your service provides financial advice, medical information, or customer support, a single hallucination can lead to reputational damage or critical errors. So, how do we move from
3 days ago


AI Supervision 1. 생성형 AI 서비스 성공의 열쇠 : 출시 전 'AI Supervision'이 필수적인 이유
생성형 AI(Generative AI) 기술이 빠르게 발전하면서 많은 기업들이 자체 LLM(Large Language Model) 서비스를 준비하고 있습니다. 하지만 서비스를 실제 고객에게 공개하기 전, 개발팀은 항상 불안한 질문을 마주하게 됩니다. "우리 AI가 거짓 정보를 사실처럼 말하면 어떡하지?" "사용자가 악의적인 질문을 던져서 시스템을 공격하면?" "민감한 개인정보가 유출될 위험은 없을까?" 이러한 우려를 해소하고, 자신 있게 AI 서비스를 출시할 수 있도록 돕는 솔루션 이 바로 AI Supervision입니다. 왜 출시 전 이 도구가 필수적인지 3가지 핵심 이유로 정리해 드립니다. LLM Evaluation System Architecture 1. AI 답변의 신뢰도 확보: 정확성 평가 (Accuracy & Hallucination) 가장 큰 리스크는 AI가 그럴듯한 거짓말을 하는 '환각(Hallucination)' 현상입니다.
3 days ago


AI Supervision 1. The Key to Generative AI Service Success : Why 'AI Supervision' is Essential Before Launch
As Generative AI technology advances rapidly, many companies are rushing to prepare their own LLM (Large Language Model) services. However, right before releasing a service to actual customers, development teams often face anxiety-inducing questions: "What if our AI presents false information as fact?" "What if a user attacks the system with malicious questions?" "Is there a risk of sensitive personal information being leaked?" The solution that resolves these concerns and
3 days ago
SECURE YOUR BUSINESS TODAY
bottom of page